

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Associators in the Nucleus of Antiflexible Rings

DR. D. Bharathi*1, M. Hema Prasad²

*1 Associate Professor, Department of Mathematics, S.V. University, Tirupati, India ² Assistant Professor, Department of Mathematics, Science and Humanities, SITAMS, Chittoor, India mhmprsd@gmail.com

Abstract

In this paper, first we prove that if R is a semi prime third power associative ring of char $\neq 2$ then either N = C or R is associative. Using this result we prove that if R is a simple third power associative antiflexible ring of char \neq 2,3 satisfying (x, x, y) = k (y, x, x) for all x,y ϵ R, k \neq 0 and 3 $k^2 + 2k + 1 \neq 0$ then either R is associative or nucleus equals center.

Keywords*: Associator, commutator, nucleus, center, simple ring, prime ring.*

Introduction

E. Kleinfeld and M. Kleinfeld [3] studied a class of Lie admissible rings. Also in [4] they have proved some results of a simple Lie admissible third power associative ring R satisfying an equation of the form (x,y,x) = $k(x,x,y)$ for all $x,y \in R$, $k \neq 0,1$ and $k^2+2 \neq 0$. In this paper, we prove that if R is a simple third power associative antiflexible ring of char $\neq 2,3$ satisfying $(x, x, y) = k (y, x, x)$ for all $x, y \in R$, $k \neq 0$ and $3k^2 + 2k + 1 \neq 0$ then either R is associative or nucleus equals center.

Preliminaries

Let R be a non associative ring . We denote the commutator and the associator by $(x,y) = xy - yx$ and $(x,y,z) = (xy)z - x(yz)$ for all $x,y,z \in R$ respectively. The nucleus N of a ring R is defined as N = { n $\in R$ / (n,R,R) = $(R,n,R) = (R,R,n) = 0$. The center C of ring R is defined as C = { c ϵ N / (c,R) = 0}. A ring R is called simple if $R^2 \neq$ 0 and the only non-zero ideal of R is itself. A ring R is called Prime if whenever A and B are ideals of R such that $AB = 0$, then either $A = 0$ (or) $B = 0$.

Main Results

i.e., n commutes with all associators.

[Bharathi, 3(2): February, 2014] ISSN: 2277-9655

The combination of (9) & (4) yields $(n, w(x, y, z)) = -(n, (w, x, y)z)$ -----(10) If u and v are two associators in R, then substituting $z=n$, $x=u$, $y=v$ in (5), we get $(uv, n) = 0$ ---------(11) If $u = (a, b, c)$ then $((a, b, c)v, n) = 0$ Using (10), we have $- (a(b, c, v), n) = 0$ From this and (5), we obtain $-a((b, c, v),n) - (a, n)(b, c, v) = 0$ Using (9), we have (a, n) (b, c, v) = 0 $\qquad \qquad$ -----(12) Now we prove the following theorem. **Theorem:** If R is semiprime third power associative ring of char \neq 2 which satisfies (3), then either N = C (or) R is associative. **Proof:** If $N \neq C$, then there exist $n \in N$ and $a \in R$ such that $(a, n) \neq 0$. Hence from (12), we have (b, c, v) = 0 for all associators v and b, c ϵ R. We can write this as $(R, R, (R, R, R)) = 0$. By putting $v = (q, r, s)$ in (11), we get $(u(q, r, s), n) = 0$ Using (10) this leads to $-(u, q, r)s, n) = 0$. From this and (5), we obtain (u, q, r) $(s, n) = 0$. Since $N \neq C$, we have $(u, q, r) = 0$ for all associators u and $q, r \in R$. We can write this as $((R, R, R), R, R) = 0$. Using $(R, R, (R, R, R)) = 0 = ((R, R, R), R, R)$ the identity (3) gives $(R, (R, R, R), R) = 0$ Thus (R, R, R) C N. Since R is semiprime, we use the result in [1] to conclude that R must be associative. This completes the proof of the theorem. Henceforth we assume that R satisfies an equation of the form $(x, x, y) = k(y, x, x)$ ------(13). for all x, $y \in R$, $k \neq 0$ and using (3), identity (13) implies $(x, y, z) + (y, z, x) + (z, x, y) = 0$ Putting $y=x, z=y$ \implies $(x, x, y) + (x, y, x) + (y, x, x) = 0$ $k(y, x, x) + (x, y, x) + (y, x, x) = 0$ $(k+1)$ $(y, x, x) + (x, y, x) = 0$ $(x, y, x) = -(k+1) (y, x, x)$ $= -(k+1)(x, x, y)$ $= -(\frac{k+1}{k})$ $(\text{by (1) & (13))$ --------(14) **Lemma:** Let $T = \{ t \in R / (t, N) = 0 = (tR, N) = (Rt, N) \}$. Then T is an ideal of R. **Proof:** Let $t \in T$, $n \in N$ and $x, y, z \in R$. Then $(t.xy, n) = (t.xy, n) = 0$. Using (9) and the definition of T. Also (5) implies $(y(tx, n) = (y,n).tx$. But (5) also yields (yt, n) = (y, n)t = 0 since (yt,n) = 0. Now, $((y, n), t, x) = ((y, n).t)x - (y, n).tx$ $= 0 - (y, n).tx$ $= - (y.txt, n)$ or $(y,tx, n) = -((y, n), t, x)$ ---------(15) Now consider , $((y, n), x, x) = (yn, x, x) - (ny, x, x)$ ------(16) Using (14), $(x, x, yn) = k (yn, x, x)$ While $0 = C (x, x, y, n) = (x, x, yn) - (x, x, y)$ and $0 = C$ (n, y, x, x) = (ny, x, x) – n(y, x, x) Substitute this in (16) and using (14) $\&$ (9) gives $((y, n), x, x) = (yn, x, x) - (ny, x, x)$ $=(x, x, yn) - n(y, x, x)$ (by (1)) $= (x, x, yn) - n(x, x, y)$ (by (1)) $= (x, x, y)n - n(x, x, y)$ (by (4)) $=$ ((x, x, y), n) $= 0$ Linearizing the above identity, we get

 $((y, n), x, z) = -((y, n), z, x)$ -----------(17) Again consider $((x, n), y, x) = (xn, y, x) - (nx, y, x)$ ------(18) From C (x, n, y, x) = 0, it follows that $(xn, y, x) = (x, ny, x)$ From (14), it follows that $(x, ny, x) = -(k+1) (x, x, ny)$ (by (14)) $= -(k+1)$ (ny, x, x) (by (1)) And from C $(n, y, x, x) = 0$ we have $(ny, x, x) = n(y, x, x)$ Thus we have $(x, ny, x) = -(k+1) (x, x, ny)$ -----(19) From C(n, x, y, x) = 0, it follows that $(nx, y, x) = n(x, y, x)$ While from (14), we have $n(x, y, x) = -(k+1) n(x, x, y)$ Therefore $(nx, y, x) = n(x, y, x) = -(k+1) n(x, x, y)$ ------(20) Substitute (19) $\&$ (20) in (18), we get $((x, n), y, x) = (xn, y, x) - (nx, y, x)$ $= -(k+1) n(x, x, y) + (k+1) n(x, x, y)$ $= 0$ -------- (21) Linearizing (21), we get $((x, n), y, z) = -((z, n), y, x)$ -----(22) Combining (17) and (22), we get $((\pi(x),n), \pi(y), \pi(z)) = \text{Sgn}(\pi)$ ($(x, n), y, z$) -------(23) for every permutation π on the set $\{x, y, z\}$. Applying (23), we see that $((y, n), t, x) = ((y, n), x, t)$ (by (17)) $=$ - ((t, n), x, y) (by (22)) $=$ ((t, n), y, x) (by (17)) $= 0$ (by defn. of T) Combined this with (15), we obtain $(y, tx, n) = 0$ So T is a right ideal of R. By using the anti-isomorphic ring, we similarly prove that T is a left ideal of R. Therefore T is an ideal of R. **Theorem:** If R is a simple third power associative antiflexible ring with (13) of char \neq 2,3 is either associative or satisfies nucleus equals center, $N = C$. **Proof:** Simplicity of R implies either that $T = R$ or $T = 0$. If $T = R$, then $N = C$. Hence assume that $T = 0$. Let $u = (a, b, c)$ be an arbitrary associator with elements a, b, c \in R. We have already observed that for every associator v, we have $(uv, n) = 0$. Now using ($C(u, x, x, y)$, n) = 0 and (9) gives $((u, x, x)y, n) = - (u(x, x, y), n) = 0$ Using (C(y, x, x, u), n) = 0 gives (y(x, x, u), n) = - ((y, x, x)u, n) = 0 Also (14) implies that $y(x, x, u) = k y(u, x, x)$ \Rightarrow y(u, x, x) = $\frac{1}{k}$ y(x, x, u) So $(y(u, x, x),n) = 0$ Since $((u, x, x), n) = 0$ $(by (7))$ We have $(u, x, x) \in T$. Since we are assuming $T = 0$, we have $(u, x, x) = 0$ for all $x \in R$. Using this in (14), we get $(x, u, x) = 0$ and $(x, x, u) = 0$ Thus $(x, u, x) = (x, x, u) = (u, x, x) = 0$ ----------(24) For a, $b \in R$, we define $a \equiv b$ if and only if $(a-b, n) = 0$ for all $n \in N$. Let $\alpha = x(y, x, z)$ Because of (9), all associators are congruent to zero. Thus C (x, y, x, z) = 0 Implies α = - (x, y, x)z. Equ (14) implies $\alpha = - (x, y, x)z = (k+1) (y, x, x)z$ By using $C(w, x, y, z) = 0$ continuously and (14) yields $\alpha = x(y, x, z)$ ≡ - (x, y, x)z $\equiv \left(\frac{k+1}{k}\right) (x, x, y)z$ (by (14))

 \equiv - $\left(\frac{k+1}{k}\right)$ x(x, y, z) $\equiv \left(\frac{k+1}{k}\right)$ (x, x, y)z \equiv (k+1) (y, x, x)z \equiv - (k+1) y(x, x, z) \equiv k y(x, z, x) \equiv - k (y, x, z)x \equiv k y(x, z, x) ≡ - k (k+1) y(z, x, x) ≡ k (k+1) (y, z, x)x --------(25) Permuting y and z in (25), we get $β = x(z, x, y) = - (x, z, x)y$ $= (\frac{k+1}{k}) (x, x, z)x$ $= - \left(\frac{k+1}{k} \right) x(x, z, x)$ $=(\frac{k+1}{k}) (x, x, z)y$ $=(k+1)$ (z, x, x)y $= -(k+1) z(x, x, y)$ $=$ k $z(x, y, x)$ $= - k (z, x, y)x$ $=$ k $z(x, y, x)$ $= -k (k+1) z(y, x, x)$ $= k (k+1) (z, y, x)x$ ----(26) From identity (3) we obtain $x(x, y, z) + x(z, x, y) = -x(y, z, x)$ ----------(27) using (25) and (26) in (27), we get $(-\frac{k}{k+1})\alpha + \beta = -x(y, z, x)$ ----------(28) However C (x, y, z, x) = 0 gives $-x(y, z, x) \equiv (x, y, z)x$ Thus $\left(-\frac{k}{\ln k}\right)$ $\frac{k}{k+1}$) $\alpha + \beta = (x, y, z)x$ ----------(29) However using (1) and C(z, x, x, x) = 0, we have $(x, x, z)x = (z, x, x)x$ (by (1)) $= -z(x, x, x)$ $= 0$ Since $(x, x, x) = 0$, we have $(x, x, z)x = 0$ Linearization of this gives $(x, y, z)x + (y, x, z)x + (x, x, z)y \equiv 0$ or $(x, y, z)x \equiv -(y, x, z)x - (x, x, z)y$ -----(30) Using (29), (25) and (26) in (30), we get $-\frac{k}{k}$ $\frac{k}{k+1} \alpha + \beta = \frac{\alpha}{k} - \frac{k}{k+1}$ $\frac{k}{k+1}$ β $\frac{\alpha}{k} + \frac{k}{k+1} \alpha = \beta + \frac{k}{k+1}$ $\frac{k}{k+1}$ β $\left(\frac{k^2 + k + 1}{k(k+1)}\right)$ $\frac{k^{2}+k+1}{k(k+1)}$) $\alpha = (\frac{2k+1}{k+1})$ $\frac{n+1}{k+1}$) β Using (25) and (26) to substitute for $\frac{\alpha}{k+1}$ and $\frac{\beta}{k+1}$ in the above equation gives $\left(\frac{k^2 + k + 1}{k}\right)$ $\frac{k+1}{k}$) ($-\frac{1}{k}$) x(x, y, z) \equiv (2k+1) ($-\frac{1}{k}$) x(x, z, y) (k^2+k+1) x(x, y, z) ≡ (2 k^2+k) x(x, z, y) -----(31) Linearizing (31), we obtain (k^2+k+1) (w(x, y, z) + x(w, y, z)) = (2 k^2+k) (w(x, z, y) + x(w, z, y)) -----(32) By substituting $w=u=(a, b, c)$ in (32) and using (11), we get (k^2+k+1) x(u, y, z) \equiv ($2k^2+k$) x(u, z, y) -----(33) Linearizing (24) we have $(u, z, y) = - (u, y, z)$ Using this in (33), we obtain

 (k^2+k+1) x(u, y, z) \equiv - ($2k^2+k$) x(u, y, z)

 $(3k^2+2k+1)$ x(u, y, z) = 0 Thus if $(3k^2+2k+1) \neq 0$, we have $x(u, y, z) \equiv 0$ or $[x(u, y, z), n] = 0$ for all $n \in N$ Thus $(u, y, z) \in T$. Since $T = 0$, we have $(u, y, z) = 0$ Similarly, $\left(\frac{k^2 + k + 1}{k(k+1)}\right)$ $\frac{k^2+k+1}{k(k+1)}$) $\alpha \equiv \left(\frac{2k+1}{k+1}\right)$ $\frac{k+1}{k+1}$) β also yields (k^2+k+1) (y, z, x)x $\equiv (2k^2+k)$ (z, y, x)x Linearizing the above equation, we get (k^2+k+1) ($(y, z, x)w + (y, z, w)x$) = $(2k^2 + k)$ ($(z, y, x)w + (z, y, w)x$) Putting w=u=(a, b, c) in above and using (11), using $(z, y, x)u = 0$ and $(y, z, x)u = 0$, we ge (k^2+k+1) (y, z, u)x $\equiv (2k^2+k)$ (z, y, u)x linearizing (24), we have $(z, y, u) = - (y, z, u)$ using this in the previous equ, we obtain (k^2+k+1) (y, z, u)x $\equiv -(2k^2+k)$ (y, z, u)x \Rightarrow $(3k^2+2k+1)$ (y, z, u)x = 0 Thus if $(3k^2+2k+1) \neq 0$, we have $(y, z, u)x \equiv 0$ or $[(y, z, u), n] = 0$ for all $n \in N$ Using C (x, y, z, u) = 0 and (x, y, z) $u = 0$ $x(y, z, u) = 0$ or $(x(y, z, u), n) = 0$ for all $n \in N$. Thus $(y, z, u) \in T$. Since $T = 0$ we have $(y, z, u) = 0$ Now we have both $(y,z,u) = 0$ and $(u,y,z) = 0$. Using these two equations in (3) we get $(z, u, y) = 0$ Now we are in the situation where all associators are in the nucleus. i.e., (R, R, R) Ç N.

we use result in [2] to conclude that R must be associative.

References

- *[1] C. Maneri, Simple (-1,1) rings with an idempotent, Proc. Amer. Math. Soc. Vol. 14(1963), 110-117.*
- *[2] E. Kleinfeld, A class of rings which are very nearly associative, Amer. Math. Monthly, 93(1965),720- 722*
- *[3] E. Kleinfeld and Margaret Kleinfeld, A class of Lie admissible rings, Comm in Algebra.13(1985),465- 477.*
- *[4] E. Kleinfeld and Margaret Kleinfeld, On the nucleus of certain Lie admissible rings, Comm. In Algebrs,27(3) (1999),1313-1320*