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Abstract
In this paper, first we prove that if R is a semiie third power associative ring of ctya@ then either N =
C or R is associative. Using this result we prdwa if R is a simple third power associative aagible ring of char
# 2,3 satisfying (X, x, y) = k (y, x, X) for all x¢ R, k# 0 and %2 + 2k + 1# 0O then either R is associative or
nucleus equals center.
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Introduction

E. Kleinfeld and M. Kleinfeld [3] studied a clas$ Ide admissible rings. Also in [4] they have prave
some results of a simple Lie admissible third poa&sociative ring R satisfying an equation of terf (x,y,x) =
k(x,x,y) for all x,ye R, k# 0,1 andk?+2 # 0. In this paper, we prove that if R is a simgied power associative
antiflexible ring of chat 2,3 satisfying (x, X, y) = k (y, X, x) for all x¢/R, k# 0 and &2 + 2k + 1# 0 then either R
is associative or nucleus equals center.

Preliminaries

Let R be a non associative riMje denote the commutator and the associator,py € xy — yx and
(x,¥,2) = (xy)z — x(yz) for all x,y,z R respectively. The nucleus N of aring R is defims N ={nr R/ (n,R,R) =
(R.,n,R) = (R,R,n) = 0}. The center C of ring R ifined as C ={ & N/ (c,R) = 0}.Aring R is called simple R? #
0 and the only non-zero ideal of R is itself. AgiR is called Prime if whenever A and B are idedI® such that
AB =0, then either A=0 (or) B=0.

Main Results
Let R be an antiflexible, then it satisfibe identity
A Y, ) =(x9)=(@y.x )
By the third power associativity, we have
xx,x=0 e (2)

Linearizing of (2) gives
Bx,y,2) =y, 8,2, x) +(zxy)=0 e 3
We use the following two identities Teichmuller as&mi Jacobi which holds in all rings
C(Wv XY, Z) = (WX1 Y, Z) - (W1 XX() + (Wr X, yZ) - W(Xv \ Z) - (W1 X, y)Z =0 — (4)

And D(X! 2 Z) = (va Z) - X(y! Z) - (Xv Z)'y(X, 2 Z) - (Z’ X, y) + (X! Z, y) =0 - (5)
WedenoteE(x,y,2) =X Y. 2)+ .z, X)+&y) e (6)
Then from D(x, y, z) — D(y, X, z), we obtain

(% y),2)+((Y, 2), ¥) #(X), ) =E (X, ¥, 2) - E(x,2,y) - @)

As we observed by Maneri in [1], in any arbitrairygr with elements w, X, y, z we have
0=C(w, X, Y, 2)—C(X, ¥, Z, w) + C(y, z, w, ¥)P(z, w, X, Y)

= E(wx,y,2)-E(xy z,w)+ E(yz,w,X)—E(zw,X,y)—(W, (X)) +(X,(y,Z,W))—(y,(z,W,X)) +(z,(W.X, Y)).

We now assume that R satisfies identity (3), E(&)k O for all a, b, e R.

So the above equation imply

W, (6 Y, 2) + (% (v, 2, W), (2 W, X)) + (2, (W, x, y) =0 e @®)
Let N be the nucleus of R and let N. By substituting n for w in (8), we get
(n! (X! Y, Z)) =0 (9)

i.e., n commutes with all associators.
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The combination of (9) & (4) yields

L@xy,2)=-(nwxy2 (10)
If uand v are two associators in R, then subgtiguz=n, x=u, y=v in (5), we get
uv(nm=0 e (11)

fu=(a,b,c)then ((a,b,c)v,n)=0
Using (10), we have  —(a(b,c,v),n)=0
From this and (5), we obtain  -a((b, ¢, v),i(a-n)(b, c,v) =0
Using (9), we have (a,n)(b,c, 0= e (12)
Now we prove the following theorem.
Theorem: If R is semiprime third power associative ringobfar# 2 which satisfies (3), then either N = C (or) SR i
associative.
Proof:
If N # C, then there existaiN and & R such that (a, i} 0.
Hence from (12), we have (b, ¢, v) = 0 for all asatwrs v and b, ¢R.
We can write thisas (R, R, (R, R, R))=0.
By putting v = (q, r, s) in (11), we get @ur,s),n)=0
Using (10) this leads to —((u, q, NeEFro.
From this and (5), we obtain (u, g, Nrs= 0.
Since N£ C , we have (u, g, r) = 0 for all associatorsid g,re R.
We can write thisas ((R,R,R),R, R) =0.
Using R,R, (R,R,R) =0(R, R, R), R, R) the identity (3) gives

R,RR),R)=0
Thus (R,R,R) C N. Since R is semiprime, we usadialt in [1] to conclude that R must be assoatativ
This completes the proof of the theorem.
Henceforth we assume that R satisfies an equafitredorm

(X! X, y) =k ()yn X) """ (13)
for all x, y R, k# 0 and using (3), identity (13) implies
Xy, 2)+(y,2,x) +(&Yy) =0
Putting y=X, 2=y = (X, X Y) %Y, X))+, x,x)=0
K(y, X, 89 (X, y, X) + (y, X, X) = 0
k+Q) (¥, X, X) + (X, y, X) =0
X, %) = - (k+1) (v, X, X)
=- (k+1) (X! X, y)

=-EH) xy)  (by(D)&@3) (14)
Lemma: LetT={teR/(, N)=0=(tR, N) = (Rt, N) }. Then T is adeal of R.
Proof: Let teT,neNandx,y, zR.
Then (t.xy, n) = (t.xy,n)=0.
Using (9) and the definition of T. Also (5) implies  (y.tx, n) = (y,n).tx.
But (5) also yields (yt, n) = (y, n)t=0  sing&,n) = 0.

Now, ((y, n), t, xX) = ( (y, n).t)x — (y, n).tx

=0—(y, n).tx

= - (y.tx, n)
or (b,m=-(ntx) e (15)
Now consider ,  ((y, n), x, X) = (yn, X, XYY, X, X) e (16)

Using (14), (X, X, yn) = k (yn, X, X)
While 0=C (x, x,y, n) =(x, X, yn) — (X, X)ry and
0=C(n,YV, X, x)=(ny, X, X) —n(y, X, X)
Substitute this in (16) and using (14) & (9) gives
((y! n)! X, X) =(yn,X, X) - (ny1 X, X)
:(Xv X, yn) - n(y! X, XQ by (1))

= (Xv X, yn) - n(X, X, yq by (1))

= (X! X, y)n - n(X1 X, y) (by (4))

=§KKWW
Linearizing the above identity, we get

http: // www.ijesrt.confC)l nternational Journal of Engineering Sciences & Research Technology
[1007-1011]



[Bharathi, 3(2): February, 2014] ISSN: 2277-9655
Impact Factor: 1.852

( (yi n)! X, Z) =- ( (yi n)! Z, X) _________ (17)
Again consider ( (X, n),y, X) =(xn,y, X)X, y,x) e (18)
From C (X, n, y, X) = 0, it follows that (xn, y) % (X, ny, X)
From (14), it follows that
(x, ny, x) = - (k+1) (x, x, ny) ~ (by (14))

=- (k+1) (ny, x,x)  (by (1))
And from C (n, y, X, X) =0 we have

(ny, X, X) = n(y, X, X)
Thus we have  (x, ny, x) =- (k+1) (x,x,ny) - (29)
From C(n, X, y, X) = 0, it follows that (nx,¥) =n(x,y, X)
While from (14), we have n(x, y, X) = - (RH(x, x, y)
Therefore (nx,y, x)=n(x,y,x)=-(k+)nxy) - (20)
Substitute (19) & (20) in (18), we get
( (Xv n)! \ X) = (Xn! Y, X) - (nX, Y, X)
=- (k+1) n(X1 X, y) + (k+mIX! X, y)

=0 e (21)
Linearizing (21), we get
(x.n.,y.z)=-(zn,y,x e (22)
Combining (17) and (22), we get n(X),n) ,n(y), n(z)) = Sgng) ( (x, n),y,z) - (23)

for every permutation on the set {x, y, z}.

Applying (23), we see that ((y,n),t,x)=(0), x,t) (by(17))
=-((tn).xy (by(22))
=(tn),y,x)  (by(17))
=0 ( by dedd.T)

Combined this with (15), we obtain (y.tx, n) =0

So T is a right ideal of R. By using the anti-isaptuc ring, we similarly prove that T is a left mleof R.

Therefore T is an ideal of R.

Theorem: If R is a simple third power associative antifldg ring with (13) of chae 2,3 is either associative or

satisfies nucleus equals center, N=C..

Proof: Simplicity of R implies either that T = R or TO=
If T=R,then N=C.
Hence assume that T = 0.
Letu = (a, b, c) be an arbitrary assor with elements a, b,eR.
We have already observed that for easspciator v, we have (uv, n) = 0.
Now using ( C(u, X, X, y), n) = 0 af®J gives
( (U, X, X)yr n) =- ( U(X, X, y)r FF)O
Using ( C(y, X, X, u), n) =0 gives/((x, X, u), n) =-((y, X, X)u,n) =0
Also (14) implies that y(x, X, u) =2vku, X, x)
= y(u, X, X) :% y(X, X, U)
So (y(u,x,x),n)=0 Since ((u, ¥, W) =0 (by (7))
We have (u, x,x3 T.
Since we are assuming T = 0, we hayg,(x) = O for all xe R.
Using this in (14), we get
(X,u,x)=0and (x,x,u)=0
Thus (X, u, X) =, x, u)=(U,x,x0= e (24)
For a, ka R, we define & b if and only if (a-b, n) = 0 for all aN.
Leto = x(y, X, 2)
Because of (9), all associators are agmrto zero.
Thus C (X, Y, X,2) =0 Implies= - (X, Y, X)Z.
Equ (14) implies a = - (X, Y, X)z = (k+1) (y, X, X)z
By using C(w, X, y, z) = 0 continuouslyda(14) yields
a =X, X, z)

=- (XY, X)zZ
k+1

= (Z2) (% X, )z (by(14))
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(7) X(X Y ,2)

(T) (X, X, y)Z
(k+1) (y, x, X)z
- (k+1) y(x, X, 2)
k y(x, z, X)
-k (y, X, Z)X
k y(x, z, X)
-k (k+1) y(z, X, X)
=k (k+1) (y, z, X)X -------- (25)
Permuting y and z in (25), we get
B =x(z,xy) =-(X 2z X)y

:Ei—l) (%, X, Z)Xx

= -EF) X(X, z, X)

=) (x % 2)y

= (k+1) (z, x, X)y
= - (k+1) z(x, Xy

=kz(x,y, X)

=-k(z, x, y)x

=kz(x, Yy, X)

= -k (k+1) z(y, %)

=k (k+1) (z, yxx)  ----(26)
From identity (3) we obtain
XY, )+ X@ X=X, 200 e (27)
using (25) and (26) in (27), we get
(—ggletB=-xtv.z0 e (28)
However C (X, Y, z, X) = 0 gives —x(y, z,X)X, Y, Z)X
Thus (- —=)a+B= (X y, 2)X —-—(29)

However using (1) and C(z, x, X, x) = 0, we have
(X, X, Z)X = (z, X, X)X (by (1))
=-2(x, X, X)
=0
Since (x, x, X) =0, we have (x, X, zZ)x=0
Linearization of this gives
Xy, X+ (Y, X, Z2)X + (X, X, 2)¥ O
or (XY, 2E-(, X, 2)x-X,2y e (30)
Using (29), (25) and (26) in (30), we get

K2+ k+1 _ ,2K+1
(k(k+1) o= P

Using (25) and (26) to substitute fgr- and % in the above equation gives
(kZ +kk+1 ) (-%) X(X, ¥, 2)= (2k+1) (-%) X(X, Z, Y)

= (k?+k+1) x(X, ¥, 2)= ( 2k?+K) (X, Z, y) ----- (31)
Linearizing (31), we obtain
(k?+k+1) (W(X, Y, 2) + X(W, ¥, 2) F (2k*+K) (W(X, Z, ) + x(w, z,y)) - (32)
By substituting w=u=(a, b, ¢) in (32) and using)Me get
(k2+k+1) x(u, y, 2 (22+K) x(u, 2,y) e (33)

Linearizing (24) we have (u, z,y) =- (u, Y, 2)
Using this in (33), we obtain
(k?+k+1) x(u, y, 2)5 - ( 2*+K) x(u, ¥, 2)
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(3k2+2k+1) x(u,y,2) =0

Thus if (3c2+2k+1) #0, we have x(u, y, 2 0

or [ X(u,y, z),n]=0forallaN

Thus (u,y, zZE T. Since T=0, we have (u,y,z)=0

L K2+ k+1 _,2k+1 .
Similarly, ( D) )a=( " ) B also yields

(k2+k+1) (y, z, X)x= (2k? + k) (z, y, X)X
Linearizing the above equation, we get
(k?+k+1) ((y, Z, X)W + (¥, Z, W)X ) = @ + k) ((2, Y, )W + (2, y, W)X )
Putting w=u=(a, b, ¢) in above and using (11), g¢n y, X)u = 0 and (y, z, X)u = 0, we ge
(k2+k+1) (y, z, upe (2k2 + k) (z, y, U)X
linearizing (24), we have (z,y, u) = - (y, z, u)
using this in the previous equ, we obtain
(k2+k+1) (y, z, upe - (2k% + k) (y, z, u)x
= (3k2+2k+1) (y, z, u)x =0
Thus if (F2+2k+1) #0, we have (y, z, uyx 0
or [(Y,z,u),n]=0forallaN
Using C (x,y,z,u)=0and (x,y,z2)u=0
X(y, z, u) =0 or (x(y, z, u), nNo=Ffor all ne N.
Thus (y, z, ug T. Since T = 0 we have (y,z,u) =0
Now we have both (y,z,u) = 0 and (u,y,z) = 0.
Using these two equations in (3) we get (z,u,y) =0
Now we are in the situation where all associatoesrathe nucleus.
ie., (R,R,R)CN.
we use result in [2] to conclude that R must becasive.
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