

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Associators in the Nucleus of Antiflexible Rings

DR. D. Bharathi*1, M. Hema Prasad²

*1 Associate Professor, Department of Mathematics, S.V. University, Tirupati, India
2 Assistant Professor, Department of Mathematics, Science and Humanities, SITAMS, Chittoor, India
mhmprsd@gmail.com

Abstract

In this paper, first we prove that if R is a semi prime third power associative ring of char $\neq 2$ then either N = C or R is associative. Using this result we prove that if R is a simple third power associative antiflexible ring of char $\neq 2,3$ satisfying (x, x, y) = k (y, x, x) for all $x,y \in R$, $k \neq 0$ and $3k^2 + 2k + 1 \neq 0$ then either R is associative or nucleus equals center.

Keywords: Associator, commutator, nucleus, center, simple ring, prime ring.

Introduction

E. Kleinfeld and M. Kleinfeld [3] studied a class of Lie admissible rings. Also in [4] they have proved some results of a simple Lie admissible third power associative ring R satisfying an equation of the form (x,y,x) = k(x,x,y) for all $x,y \in R$, $k \ne 0,1$ and $k^2+2\ne 0$. In this paper, we prove that if R is a simple third power associative antiflexible ring of char $\ne 2,3$ satisfying (x,x,y) = k(y,x,x) for all $x,y \in R$, $k\ne 0$ and $3k^2+2k+1\ne 0$ then either R is associative or nucleus equals center.

Preliminaries

Let R be a non associative ring . We denote the commutator and the associator by (x,y)=xy-yx and (x,y,z)=(xy)z-x(yz) for all $x,y,z\in R$ respectively. The nucleus N of a ring R is defined as $N=\{n\in R/(n,R,R)=(R,n,R)=(R,R,n)=0\}$. The center C of ring R is defined as $C=\{c\in N/(c,R)=0\}$. A ring R is called simple if $R^2\neq 0$ and the only non-zero ideal of R is itself. A ring R is called Prime if whenever A and B are ideals of R such that AB=0, then either A=0 (or) B=0.

Main Results

Let R be an antiflexible, then it satisfies the identity

$$A(x, y, z) = (x, y, z) = (z, y, x)$$
 -----(1)

By the third power associativity, we have

$$(x, x, x) = 0$$
 -----(2)

Linearizing of (2) gives

$$B(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y) = 0$$
 -----(3)

We use the following two identities Teichmuller and semi Jacobi which holds in all rings

$$C(w, x, y, z) = (wx, y, z) - (w, xy, z) + (w, x, yz) - w(x, y, z) - (w, x, y)z = 0$$
 ----- (4)

And
$$D(x, y, z) = (xy, z) - x(y, z) - (x, z)y - (x, y, z) - (z, x, y) + (x, z, y) = 0$$
 -----(5)

We denote E
$$(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y)$$
 ----(6)

Then from D(x, y, z) - D(y, x, z), we obtain

$$((x, y), z) + ((y, z), x) + ((z, x), y) = E(x, y, z) - E(x, z, y)$$
 -----(7)

As we observed by Maneri in [1], in any arbitrary ring with elements w, x, y, z we have

0 = C(w, x, y, z) - C(x, y, z, w) + C(y, z, w, x) - P(z, w, x, y)

$$=E(wx,y,z)-E(xyz,w)+E(yz,w,x)-E(zw,x,y)-(w,(x,y,z))+(x,(y,z,w))-(y,(z,w,x))+(z,(w,x,y)).$$

We now assume that R satisfies identity (3), E(a, b, c) = 0 for all $a, b, c \in R$.

So the above equation imply

$$(w, (x, y, z)) + (x, (y, z, w)) - (y, (z, w, x)) + (z, (w, x, y)) = 0$$
 ----(8)

Let N be the nucleus of R and let $n \in N$. By substituting n for w in (8), we get

$$(n, (x, y, z)) = 0$$
 -----(9)

i.e., n commutes with all associators.

The combination of (9) & (4) yields

$$(n, w(x, y, z)) = -(n, (w, x, y)z)$$
 ----(10)

If u and v are two associators in R, then substituting z=n, x=u, y=v in (5), we get

$$(uv, n) = 0$$
 -----(11)

If u = (a, b, c) then ((a, b, c)v, n) = 0

Using (10), we have -(a(b, c, v), n) = 0

From this and (5), we obtain -a((b, c, v), n) - (a, n)(b, c, v) = 0

Using (9), we have (a, n) (b, c, v) = 0 ----(12)

Now we prove the following theorem.

Theorem: If R is semiprime third power associative ring of char $\neq 2$ which satisfies (3), then either N = C (or) R is associative.

Proof:

If $N \neq C$, then there exist $n \in N$ and $a \in R$ such that $(a, n) \neq 0$.

Hence from (12), we have (b, c, v) = 0 for all associators v and b, $c \in R$.

We can write this as (R, R, (R, R, R)) = 0.

By putting v = (q, r, s) in (11), we get (u(q, r, s), n) = 0

Using (10) this leads to

$$-((u, q, r)s, n) = 0.$$

From this and (5), we obtain

$$(u, q, r) (s, n) = 0.$$

Since $N \neq C$, we have (u, q, r) = 0 for all associators u and $q, r \in R$.

We can write this as ((R, R, R), R, R) = 0.

Using

$$(R, R, (R, R, R)) = 0 = ((R, R, R), R, R)$$
 the identity (3) gives $(R, (R, R, R), R) = 0$

Thus (R,R,R) Ç N. Since R is semiprime, we use the result in [1] to conclude that R must be associative.

This completes the proof of the theorem.

Henceforth we assume that R satisfies an equation of the form

$$(x, x, y) = k (y, x, x)$$
 -----(13).

for all $x, y \in R$, $k \neq 0$ and using (3), identity (13) implies

$$(x, y, z) + (y, z, x) + (z, x, y) = 0$$

Putting

$$y=x, z=y = \begin{cases} (x, x, y) + (x, y, x) + (y, x, x) = 0 \\ k(y, x, x) + (x, y, x) + (y, x, x) = 0 \end{cases}$$

$$(k+1) (y, x, x) + (x, y, x) = 0$$

$$(x, y, x) = -(k+1) (y, x, x)$$

$$= -(k+1) (x, x, y)$$

$$= -(\frac{k+1}{k}) (x, x, y) \qquad (by (1) & (13)) \qquad ------(14)$$

Lemma: Let $T = \{ t \in R / (t, N) = 0 = (tR, N) = (Rt, N) \}$. Then T is an ideal of R.

Proof: Let $t \in T$, $n \in N$ and $x, y, z \in R$.

Then (t.xy, n) = (t.xy, n) = 0.

Using (9) and the definition of T. Also (5) implies (y.tx, n) = (y,n).tx.

But (5) also yields (yt, n) = (y, n)t = 0 since (yt,n) = 0.

Now, ((y, n), t, x) = ((y, n).t)x - (y, n).tx

$$= 0 - (y, n).tx$$

= - (y.tx, n)

or
$$(y.tx, n) = -((y, n), t, x)$$

Now consider, ((y, n), x, x) = (yn, x, x) - (ny, x, x) -----(16)

Using (14), (x, x, yn) = k (yn, x, x)

While 0 = C(x, x, y, n) = (x, x, yn) - (x, x, y)n and

0 = C(n, y, x, x) = (ny, x, x) - n(y, x, x)

Substitute this in (16) and using (14) & (9) gives

$$((y, n), x, x) = (yn, x, x) - (ny, x, x)$$

= $(x, x, yn) - n(y, x, x) (by (1))$

$$= (x, x, yn) - n(x, x, y)$$
 (by (1))

$$= (x, x, y)n - n(x, x, y)$$
 (by (4))

$$= ((x, x, y), n)$$

= 0

Linearizing the above identity, we get

```
((y, n), x, z) = -((y, n), z, x)
                                                                                        ----(17)
Again consider ((x, n), y, x) = (xn, y, x) - (nx, y, x)
                                                                                             ----(18)
From C (x, n, y, x) = 0, it follows that (xn, y, x) = (x, ny, x)
From (14), it follows that
(x, ny, x) = -(k+1)(x, x, ny) (by (14))
          = -(k+1) (ny, x, x) (by (1))
And from C(n, y, x, x) = 0 we have
  (ny, x, x) = n(y, x, x)
Thus we have (x, ny, x) = -(k+1)(x, x, ny)
                                                                                              ----(19)
From C(n, x, y, x) = 0, it follows that (nx, y, x) = n(x, y, x)
While from (14), we have
                                n(x, y, x) = -(k+1) n(x, x, y)
Therefore (nx, y, x) = n(x, y, x) = -(k+1) n(x, x, y)
                                                                                             ----(20)
Substitute (19) & (20) in (18), we get
((x, n), y, x) = (xn, y, x) - (nx, y, x)
               = -(k+1) n(x, x, y) + (k+1) n(x, x, y)
                                                                                          ---- (21)
Linearizing (21), we get
((x, n), y, z) = -((z, n), y, x)
                                                                                             ----(22)
Combining (17) and (22), we get ((\pi(x), n), \pi(y), \pi(z)) = \text{Sgn}(\pi) ((x, n), y, z)
                                                                                            ----(23)
 for every permutation \pi on the set \{x, y, z\}.
Applying (23), we see that ((y, n), t, x) = ((y, n), x, t)
                                                             (by (17))
                                           = -((t, n), x, y) (by (22))
                                                               (by (17))
                                           = ((t, n), y, x)
                                           =0
                                                             (by defn. of T)
Combined this with (15), we obtain (y.tx, n) = 0
So T is a right ideal of R. By using the anti-isomorphic ring, we similarly prove that T is a left ideal of R.
Therefore T is an ideal of R.
Theorem: If R is a simple third power associative antiflexible ring with (13) of char \neq 2,3 is either associative or
satisfies nucleus equals center, N = C.
Proof: Simplicity of R implies either that T = R or T = 0.
        If T = R, then N = C.
        Hence assume that T = 0.
        Let u = (a, b, c) be an arbitrary associator with elements a, b, c \in R.
        We have already observed that for every associator v, we have (uv, n) = 0.
        Now using (C(u, x, x, y), n) = 0 and (9) gives
        ((u, x, x)y, n) = -(u(x, x, y), n) = 0
        Using (C(y, x, x, u), n) = 0 gives (y(x, x, u), n) = -((y, x, x)u, n) = 0
        Also (14) implies that y(x, x, u) = k y(u, x, x)
                                     y(u, x, x) = \frac{1}{k} y(x, x, u)
    \Rightarrow
    So (y(u, x, x), n) = 0 Since ((u, x, x), n) = 0 (by (7))
                            We have (u, x, x) \in T.
       Since we are assuming T = 0, we have (u, x, x) = 0 for all x \in R.
       Using this in (14), we get
           (x, u, x) = 0 and (x, x, u) = 0
      Thus (x, u, x) = (x, x, u) = (u, x, x) = 0
                                                                                          ----(24)
      For a, b \in R, we define a \equiv b if and only if (a-b, n) = 0 for all n \in N.
      Let \alpha = x(y, x, z)
      Because of (9), all associators are congruent to zero.
      Thus C (x, y, x, z) = 0 Implies \alpha = -(x, y, x)z.
      Equ (14) implies \alpha = -(x, y, x)z = (k+1)(y, x, x)z
      By using C(w, x, y, z) = 0 continuously and (14) yields
       \alpha = x(y, x, z)
         \equiv -(x, y, x)z
\equiv \left(\frac{k+1}{k}\right)(x, x, y)z \qquad (by (14))
```

ISSN: 2277-9655 Impact Factor: 1.852

$$= -\left(\frac{k+1}{k}\right) x(x, y, z)$$

$$= \left(\frac{k+1}{k}\right) (x, x, y)z$$

$$= (k+1) (y, x, x)z$$

$$= -(k+1) y(x, x, z)$$

$$= k y(x, z, x)$$

$$= -k (y, x, z)x$$

$$= k y(x, z, x)$$

$$= -k (k+1) y(z, x, x)$$

$$= k (k+1) (y, z, x)x ------(25)$$
Permuting y and z in (25), we get
$$\beta = x(z, x, y) = -(x, z, x)y$$

$$= \left(\frac{k+1}{k}\right) (x, x, z)x$$

$$= -\left(\frac{k+1}{k}\right) x(x, z, x)$$

$$= \left(\frac{k+1}{k}\right) (x, x, z)y$$

$$= (k+1) (z, x, x)y$$

$$= -(k+1) z(x, x, y)$$

$$= k z(x, y, x)$$

$$= -k (z, x, y)x$$

$$= k (z, x, y)x$$

$$= -k (k+1) z(y, x, x)$$

$$= -k (k+1) z($$

$$x(x, y, z) + x(z, x, y) = -x(y, z, x)$$
 -----(27)

using (25) and (26) in (27), we get

$$(-\frac{k}{k+1})\alpha + \beta = -x(y, z, x)$$
 -----(28)

However C (x, y, z, x) = 0 gives $-x(y, z, x) \equiv (x, y, z)x$

Thus
$$\left(-\frac{k}{k+1}\right)\alpha + \beta = (x, y, z)x$$
 -----(29)

However using (1) and C(z, x, x, x) = 0, we have

$$(x, x, z)x = (z, x, x)x$$
 (by (1))
= -z(x, x, x)
= 0

Since (x, x, x) = 0, we have (x, x, z)x = 0

Linearization of this gives

$$(x, y, z)x + (y, x, z)x + (x, x, z)y \equiv 0$$

or $(x, y, z)x \equiv -(y, x, z)x - (x, x, z)y$ ----(30)

Using (29), (25) and (26) in (30), we get
$$-\frac{k}{k+1} \alpha + \beta = \frac{\alpha}{k} - \frac{k}{k+1} \beta$$

$$\frac{\alpha}{k} + \frac{k}{k+1} \alpha = \beta + \frac{k}{k+1} \beta$$

$$(\frac{k^2 + k + 1}{k(k+1)}) \alpha = (\frac{2K+1}{k+1}) \beta$$

Using (25) and (26) to substitute for $\frac{\alpha}{k+1}$ and $\frac{\beta}{k+1}$ in the above equation gives

$$\left(\frac{k^{2}+k+1}{k}\right)\left(-\frac{1}{k}\right) x(x, y, z) \equiv (2k+1)\left(-\frac{1}{k}\right) x(x, z, y)$$

$$\Rightarrow \qquad (k^{2}+k+1) x(x, y, z) \equiv (2k^{2}+k) x(x, z, y) -----(31)$$

Linearizing (31), we obtain

$$(k^2+k+1)(w(x, y, z) + x(w, y, z)) \equiv (2k^2+k)(w(x, z, y) + x(w, z, y))$$
 ----(32)

By substituting w=u=(a, b, c) in (32) and using (11), we get

$$(k^2+k+1) x(u, y, z) \equiv (2k^2+k) x(u, z, y)$$
 ----(33)

Linearizing (24) we have (u, z, y) = -(u, y, z)

Using this in (33), we obtain

$$(k^2+k+1) x(u, y, z) \equiv -(2k^2+k) x(u, y, z)$$

```
ISSN: 2277-9655
Impact Factor: 1.852
```

```
(3k^2+2k+1) x(u, y, z) = 0
Thus if (3k^2+2k+1) \neq 0, we have x(u, y, z) \equiv 0
        [x(u, y, z), n] = 0 for all n \in N
Thus (u, y, z) \in T. Since T = 0, we have (u, y, z) = 0
Similarly, (\frac{k^2+k+1}{k(k+1)}) \alpha \equiv (\frac{2k+1}{k+1}) \beta also yields
(k^2+k+1)(y, z, x)x \equiv (2k^2+k)(z, y, x)x
Linearizing the above equation, we get
(k^2+k+1)((y, z, x)w + (y, z, w)x) = (2k^2+k)((z, y, x)w + (z, y, w)x)
Putting w=u=(a, b, c) in above and using (11), using (z, y, x)u=0 and (y, z, x)u=0, we ge
(k^2+k+1)(y, z, u)x \equiv (2k^2+k)(z, y, u)x
linearizing (24), we have (z, y, u) = -(y, z, u)
using this in the previous equ, we obtain
(k^2+k+1) (y, z, u)x \equiv -(2k^2+k)(y, z, u)x
               (3k^2+2k+1) (y, z, u)x = 0
Thus if (3k^2+2k+1) \neq 0, we have (y, z, u)x \equiv 0
 or [(y, z, u), n] = 0 for all n \in N
Using C (x, y, z, u) = 0 and (x, y, z)u = 0
         x(y, z, u) = 0 or (x(y, z, u), n) = 0 for all n \in N.
Thus (y, z, u) \in T. Since T = 0 we have (y,z,u) = 0
Now we have both (y,z,u) = 0 and (u,y,z) = 0.
Using these two equations in (3) we get (z,u,y) = 0
Now we are in the situation where all associators are in the nucleus.
i.e., (R, R, R) Ç N.
we use result in [2] to conclude that R must be associative.
```

References

- [1] C. Maneri, Simple (-1,1) rings with an idempotent, Proc. Amer. Math. Soc. Vol. 14(1963), 110-117.
- [2] E. Kleinfeld, A class of rings which are very nearly associative, Amer. Math. Monthly, 93(1965),720-722
- [3] E. Kleinfeld and Margaret Kleinfeld, A class of Lie admissible rings, Comm in Algebra.13(1985),465-477.
- [4] E. Kleinfeld and Margaret Kleinfeld, On the nucleus of certain Lie admissible rings, Comm. In Algebrs, 27(3) (1999), 1313-1320